Exercise 306

The amount A accumulated after 1000 dollars is invested for t years at an interest rate of 4% is modeled by the function $A(t)=1000(1.04)^{t}$.
a. Find the amount accumulated after 5 years and 10 years.
b. Determine how long it takes for the original investment to triple.

Solution

Part (a)

Plug in $t=5$ and $t=10$ to the formula and use a calculator.

$$
\begin{aligned}
A(5) & =1000(1.04)^{5} \approx 1216.65 \\
A(10) & =1000(1.04)^{10} \approx 1480.24
\end{aligned}
$$

After 5 years the investment will be worth $\$ 1216.65$, and after 10 years the investment will be worth $\$ 1480.24$.

Part (b)

Triple the amount of $\$ 1000$ is $\$ 3000$.

$$
\begin{aligned}
& A(t)=1000(1.04)^{t} \\
& 3000=1000(1.04)^{t}
\end{aligned}
$$

Divide both sides by 1000 .

$$
3=(1.04)^{t}
$$

Take the natural logarithm of both sides.

$$
\ln 3=\ln (1.04)^{t}
$$

Use the property of logarithms that allows the exponent of the argument to be brought down in front.

$$
\ln 3=t \ln 1.04
$$

Solve for t by dividing both sides by $\ln 1.04$.

$$
t=\frac{\ln 3}{\ln 1.04} \approx 28.01
$$

Therefore, it will take about 28 years for the original investment to triple in value.

